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In this study, we investigate the stability of time-dependent zonal flows to two-
dimensional (zonally symmetric) disturbances. While steady currents can only
experience inertial instability (II) in this setting, unsteady ones may be destabilized
in other ways. For example, time-periodic flows can be subject to parametric
subharmonic instability (PSI). Motivated by observations of salinity interleaving
patterns in the upper equatorial Pacific Ocean, our objective is to determine the
basic properties of dominant instabilities (their generation mechanism, spatial and
temporal characteristics, and finite-amplitude development) for background flows
that are representative of those in the upper-equatorial ocean, yet still amenable to a
computational sweep of parameter space. Our approach is to explore the stability of
solutions to linear and nonlinear versions of a two-dimensional model for an idealized
background flow with oscillating linear shear. To illustrate basic properties of the
instabilities, the f -plane and equatorial β-plane scenarios are studied using a linear
model. Stability regime diagrams show that on the f -plane there is a clear separation
in dominant vertical scales between PSI- and II-dominated regimes, whereas on the
equatorial β-plane the parameter space contains a region where dominant instability
is a mixture of the two types. In general, PSI favours lower vertical modes than
II. The finite-amplitude development of instabilities on the equatorial β-plane is
explored using a nonlinear model, including cases illustrating the equilibration of
pure II and the development of pure PSI and mixed instabilities. We find that unless
the instabilities are weak enough to be equilibrated by viscosity at low amplitude,
disturbances continue to grow until the vertical shear of their meridional velocity
field becomes large enough to allow for Richardson numbers less than 1/4; as a
consequence, PSI-favoured vertical modes are able to reach higher amplitudes than
II-favoured modes before becoming susceptible to Kelvin–Helmholtz instability, and
induce tracer intrusions of a considerably larger meridional extent.

1. Introduction
In this paper, we study the stability of time-dependent zonal currents with respect

to two-dimensional (zonally symmetric) disturbances. Instabilities arising in this
situation include inertial instability (II), which requires violation of the condition
f Q � 0 somewhere in the flow domain, where f is the Coriolis parameter and Q

is the potential vorticity of the background flow, as well as instabilities that occur
only in time-dependent flows. A familiar instability of the latter sort is parametric
subharmonic instability (PSI), which occurs for periodic time dependence. Flow
regimes conducive to these instabilities are prevalent near the equator, particularly in
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Figure 1. (a) A snapshot of zonal velocity profile observed at 165◦E in July 2001. Contour
interval is 0.1 m s−1. Light shades indicate eastward flow. The thick black line corresponds
to the zero contour. (b) The corresponding f Q (solid line) contrasted with f 2 (dashed line).
The background potential vorticity Q is defined as f − Uy , where U is the zonal component
of velocity averaged between 100 and 150 m. A steady zonal flow is susceptible to inertial
instability if the solid line drops below zero somewhere in the domain. (Data source: G.
Johnson, PMEL.)

the upper ocean, and the focus of this study is on understanding the properties of
unstable disturbances there. (Throughout the text, we refer to a region that satisfies
the aforementioned inequality as a region of ‘anomalous Q.’)

The upper equatorial ocean has a system of vigorous zonal jets with meridional
and vertical shears, and is influenced by free, equatorially trapped waves (Philander
1990). Snapshots of the flow field in the western Pacific often show transient zonal jets
swifter than 1 m s−1, with a width scale of only 50 km and displaced off the equator
by more than 1 ◦, which contain regions of anomalous Q (figure 1a).

In addition, interleaving structures are often visible in the salinity field of the
thermocline in the equatorial Pacific, taking the form of small vertical scale (∼10 m)
intrusions that can extend meridionally a few hundred kilometres and zonally in
excess of 1000 km (Richards & Banks 2002; Lee & Richards 2004). They probably
result from dynamical processes in the equatorial ocean, and indeed they have a
spatial structure consistent with that of II cells. Time-mean profiles of the flow in
the upper equatorial ocean, however, are usually only weakly inertially unstable,
and equilibration studies suggest that they are incapable of producing interleaving
(Richards & Edwards 2003). On the other hand, individual meridional sections of
the zonal component of the flow exhibit broad regions of anomalous Q, and so are
susceptible to inertial instability if the flow is assumed steady (figure 1b). In such
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cases, the instability will produce interleaving structures similar to those observed
(Edwards & Richards 1999; Richards & Edwards 2003).

Linear stability of steady equatorial currents to zonally symmetric perturbations
was originally addressed in the studies of Dunkerton (1981) and Stevens (1983). The
only possible instability in this case is II. Unstable modes form cells in the meridional-
vertical plane, with a small vertical scale determined by vertical mixing and a large
meridional scale determined by either domain boundaries, the Rossby radius of
deformation of the unstable vertical mode, or the meridional extent of the unstable
region. Since vertical mixing is an uncertain quantity in geophysical applications,
the question of vertical scale selection in realistic flows remains unresolved by these
studies. In the limit of small vertical mixing, linear theory predicts that disturbances
with the smallest vertical scale will eventually dominate the flow, suggesting that
nonlinear processes are likely to play an important role in scale selection.

The nonlinear development and equilibration of steady background flows has been
studied by Hua, Moore & Le Gentil (1997) and Griffiths (2003a, b). The nonlinear
process that has received most attention in these studies is the neutralization of the
anomalous Q region. A nonlinear vertical scale selection mechanism for the case of
strong inertial instability has been suggested by Griffiths (2003b). The main idea is
that the highest vertical modes with the fastest linear growth rates become unstable
to Kelvin–Helmholtz instability and dissipate before they completely neutralize the
anomalous Q region. The equilibrated state is therefore dominated by a disturbance
with a finite vertical scale.

d’Orgeville & Hua (2005) examined time-periodic flows, with application to
subthermocline currents in the equatorial ocean. They have shown that a vertical
mode-1 standing, zonally independent, mixed Rossby–gravity (Yanai) wave undergoes
PSI on a time scale of a few thousand days, leading to formation of structures with
vertical scales 7–8 times smaller than that of the background wave. The dominant
vertical scale in their study is determined by resonant properties of PSI, rather than
by the value of the vertical mixing coefficient. Similar to II, the nonlinear development
leads to mixing of vertically averaged potential vorticity in the vicinity of the equator.

The impact of the time dependence of the background flow on the stability and
equilibration of the system must be determined. Here we explore the existence of
both II and time-dependent instabilities. For this purpose, we obtain solutions to
both the linear and nonlinear versions of a two-dimensional (zonally independent)
model, considering the stability of flows with time-dependent linear meridional shear
U (y, t) = Λ(t)y. The linear solutions illustrate the dependence of the instabilities on
model parameters and on the background current, whereas the nonlinear solutions
determine their post-linear development and equilibration. The assumption of linear
shear allows a thorough analysis of the problem and provides insight into the stability
of more realistic flow profiles to be considered in a follow-up study.

In this study, we extend previous work by providing a unifying framework for II and
PSI. We explore the effect of flows with oscillatory and mean shear, determining the
generation mechanism (II, PSI, or both), growth rates, vertical scales and meridional
structure of the resulting unstable modes for a wide range of parameter values.
We also address the nonlinear development of instabilities in different parts of the
parameter space – where II is the dominant instability, where the only instability is
pure PSI, and where the dominant linear instability is of a mixed type.

The paper is organized as follows. Section 2 describes the ocean model. Section 3
introduces the concepts of II and time-dependent instabilities, considering background
zonal flows with steady and time-varying linear shear on an f -plane (§ 3.1), which
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most easily illustrate basic properties of the instabilities, and on an equatorial β-plane
(§ 3.2). Parameter ranges in which either II or time-dependent instabilities dominate,
and in which they interact, are determined. Section 4 discusses the nonlinear evolution
of the instabilities on the equatorial β-plane. Section 5 provides a summary and
discussion of results.

2. The model
The model describes the temporal development of a two-dimensional zonally

symmetric (x-independent) flow field. The vanishing of the zonal derivative in the
continuity equation allows a streamfunction, ψ , defined by

v = −ψz, w = ψy, (2.1)

to be introduced, where v and w are the meridional (northward) and vertical (upward)
components of velocity, respectively. The governing equations for zonal velocity u,
zonal vorticity ∇2ψ , and density ρ can then be written

ut + f ψz = −J (ψ, u) + νhuyy + νvuzz + F (y, t), (2.2a)

∇2ψt − f uz +
g

ρ∗
ρy = −J (ψ, ∇2ψ) + νh∇2ψyy + νv∇2ψzz, (2.2b)

ρt = −J (ψ, ρ) + κhρyy + κvρzz. (2.2c)

where J (ξ, η) = ξyηz − ξzηy is the Jacobian operator, ρ∗ is the reference density, νh,v

are horizontal and vertical viscosities, κh,v are horizontal and vertical diffusivities,
respectively, and F (y, t) is a vertically uniform forcing.

It is convenient to separate the flow into background and perturbation parts
u =U (y, t) + u′, ρ = ρb(z) + ρ ′, where the background zonal velocity satisfies
Ut = F (y, t). Here, we restrict the background zonal velocity to the form

U (y, t) = Λ(t)y,

which is equivalent to setting F (y, t) = [dΛ(t)/dt] y in (2.2a), and the background
density to

ρb(z) = ρ∗

(
1 − N2

g
z

)
,

where N is the background buoyancy frequency, here assumed constant, and g is the
acceleration due to gravity.

The perturbation fields are then governed by

ut + [f − Λ(t)]ψz = −J (ψ, u) + νhuyy + νvuzz, (2.3a)

∇2ψt − f uz +
g

ρ∗
ρy = −J (ψ, ∇2ψ) + νh∇2ψyy + νv∇2ψzz, (2.3b)

ρt − ρ∗N
2

g
ψy = −J (ψ, ρ) + κhρyy + κvρzz, (2.3c)

where primes on u, ψ and ρ have been dropped.
Solutions to (2.3) (the nonlinear model) are found in a channel 0 � z � H and

−L � y � L. Periodic boundary conditions are applied in z and no normal flow and
free-slip conditions are imposed on the sidewalls at ±L. Solutions are obtained
by introducing a perturbation and integrating an initial-value problem using the
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numerical code of Hua et al. (1997). Parameters, initial conditions, and grid resolution
are given in § 4. When unstable stratification arises somewhere in the flow domain,
the diffusivity coefficient is temporarily increased by a factor of 10 in that part of the
domain.

We simplify (2.3) further by dropping the nonlinear terms J (ψ, ·), assuming that
νv = κv = ν and νh = κh = 0, and adopting the hydrostatic approximation (the linear
model). In that case, solutions to (2.3) can be represented as q = qm(y, t) exp(imz)+c.c.

where q is u, ψ , or ρ, allowing the replacement of ∂z with im. Writing the simplified
version of (2.3) as a single equation in vm ( = − imψm) yields[

D2
m − c2

m∂yy + f Q(t)
]
vm = 0, (2.4)

where Dm = ∂t + νm2, c2
m = N2/m2, and Q(t) = f − Λ(t) is the background potential

vorticity. Since meridional viscosity and diffusivity coefficients are set to zero in
the linear model, solutions to (2.4) are only required to satisfy the no-normal-flow
boundary conditions vm =0 at y = ±L.

3. Linear solutions
In this section, we obtain solutions to (2.4) on the f -plane (§ 3.1) and equatorial β-

plane (§ 3.2). The f -plane set-up allows a simple analytic treatment, which elucidates
the subject, whereas the equatorial β-plane case corresponds to a more geophysically
relevant situation.

3.1. f -plane solutions

When f is constant, solutions to (2.4) can be found in the form

vm(y, t) =

∞∑
j=1

vmj (t) sin 
j (y + L), (3.1)

where 
j = πj/(2L) to ensure that there is no normal flow through the channel walls.
It follows that each vmj satisfies[

D2
m + σ 2

mj (t)
]
vmj = 0, (3.2)

with

σ 2
mj (t) = f Q(t) + 
2

j c
2
m. (3.3)

Without loss of generality, we assume that f > 0, and for notational convenience we
drop subscripts m and j in the rest of this subsection.

3.1.1. Inertial instability

To review relevant properties of II, we set Λ(t) to a constant value Λ̄ to eliminate
any influence of time-dependent instability. Since σ 2 = f (f −Λ̄)+
2c2 is then constant,
solutions have the form

v(t) = a exp(s+t) + b exp(s−t), (3.4)

where

s± = ± |σ | exp
{

i
π

4
[1 + sgn(σ 2)]

}
− νm2 (3.5)

and sgn(·) is the sign function.
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According to (3.3) and (3.5), it follows that a growing instability exists when

Λ̄ > f +

2c2 + ν2m4

f
, (3.6)

so that s+ is real and positive. In this case, a and b are the initial amplitudes of
growing and decaying modes, respectively.

For fixed f , N and Λ̄, the inviscid growth rate

s+ =

√
f (Λ̄ − f ) − N2α2 (3.7)

is uniquely determined by the ratio α = 
/m, and reaches a maximum at α = 0. Thus,
in the case of a horizontally unbounded ocean (L → ∞), all vertical modes have the
same growth rate, independent of m, and there is no mechanism for vertical-scale
selection.

The smallest vertical scale (|m| → ∞) is selected as dominant only if L is set to a finite
value. In this case, if the initial disturbance is not band-limited in m, the dominant
vertical scale will monotonically decrease with time (except for the special case when
vertical wavenumbers larger than some finite value all project onto decaying modes).
When viscosity is added to the governing equations, the ‘cascade’ to higher vertical
wavenumbers is halted at the wavenumber that first reverses the inequality (3.6). Note
that for a given m, the fastest-growing mode also favours the smallest 
 (j = 1). Thus,
assuming that the initial disturbance also is not band-limited meridionally, there will
also be a ‘cascade’ towards larger meridional scales.

3.1.2. Time-dependent instability

Studies on time-dependent instability usually focus on the case of time-periodic
background flow, for example

Λ(t) = Λ̄ − δΛ cos
2πt

T
, (3.8)

where δΛ is the amplitude of the oscillatory shear. On the f -plane we obtain the
Mathieu equation, which has been extensively studied (e.g. Stoker 1950).

Solutions to the Mathieu equation can be found analytically or numerically to any
degree of accuracy. However, it is difficult to build physical intuition about time-
dependent instabilities, except in the case of small δΛ, where physically interpretable
solutions can be found by the method of multiple scales (Bender & Orszag 1978).
This analysis reveals that the flow becomes unstable to perturbations whose natural
frequency s̄ in a time-mean shear Λ̄ satisfies s̄ =pπ/T , where p is an integer, with the
resonance corresponding to p =1 having the fastest growth rate (later in this section,
we refer to it as the ‘dominant resonance’ – see (3.23)). The method of multiple
scales can also be used to extend the analysis to finite δΛ, but calculations become
increasingly cumbersome and less illuminating. Information about the physics of
the phenomenon is hard to extract from higher-order corrections to the multiple-
scales solution, while the physical interpretation of the instability mechanism must
be modified, as the meaning of the term ‘natural frequency’ of the perturbation is
unclear when the magnitude of oscillatory shear becomes large.

To make progress in understanding the mechanism of instability without being
restricted to small oscillatory shears we assume that Λ(t) is a square wave with
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period T ,

Λ(t) = Λ̄ − δΛ sgn

(
cos

2πt

T

)
, (3.9)

in which case the background shear switches between Λ̄ ∓ δΛ at times tn = − T/4 +
nT/2. With this choice for Λ(t), the f -plane solutions can be found analytically,
allowing basic properties of II and time-dependent instabilities to be clearly identified
and interpreted in terms of a more physically transparent steady background state
dynamics. At the same time, solutions for square-wave Λ(t) are very similar to
solutions for cosine-wave Λ(t) given by (3.8), as we show later in this section.

To separate dynamical from dissipative decay of modes, we set ν = 0 in this section.
With this restriction, (3.2) becomes

vtt + σ 2
k v = 0, (3.10)

where

σ 2
k = f (f − Λk) + N2α2, (3.11)

k = 0 for t2n < t � t2n+1, and k = 1 otherwise, and Λ(0
1)
= Λ̄ ∓ δΛ.

Solutions to (3.10) can be obtained that are similar over time intervals t2n < t � t2n+2,
differing only in their amplitude. To describe the complete solution, then, it is
sufficient to obtain the solution only in the interval t0 < t � t0 + T = t2 and to find the
amplification factor for the subsequent interval. For our purpose, it is convenient to
write the general solution to (3.10) in the form

v =

⎧⎨
⎩

A cos[ω0(t − t0) + θ0], t0 < t � t1,

B cos[ω1(t − t1) + θ1], t1 < t � t2,

C cos[ω0(t − t2) + θ2], t2 < t � t3,

(3.12)

where

ωk = i |σk| exp
{

i
π

4

[
1 + sgn

(
σ 2

k

)]}
(3.13)

and θ0 and θ1 are phases to be determined. Requiring continuity of the perturbation
fields u, v and ρ in time, it follows that the appropriate matching conditions are
continuity of v and vt at t1 and t2.

For the jump at t1, the matching conditions give

A cos (ω0T/2 + θ0) = B cos θ1,

ω0A sin (ω0T/2 + θ0) = ω1B sin θ1,
(3.14)

which yield

B2

A2
= 1 +

(
ω2

0

ω2
1

− 1

)
sin2 (ω0T/2 + θ0) . (3.15)

Although the derivations presented in this subsection are valid for all values of Λk ,
for the purposes of the discussion we now assume further that Λk are both below
critical value, eliminating the possibility of II. Both ω0 and ω1 are real in this case,
and hence any instability we find is pure PSI in nature. Since Λ0 <Λ1 it follows from
the dispersion relation that ω2

0/ω
2
1 > 1 and the ratio B2/A2 can be no smaller than

one. The amplification factor, however, depends on the phase of the disturbance at
the time of the jump. Matching the solutions across the jump at t2 results in

C2

B2
= 1 +

(
ω2

1

ω2
0

− 1

)
sin2[ω1T/2 + θ1], (3.16)
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Figure 2. (a) Amplification factor C2/A2 and (b) phase map θn+2(θn) (solid curves) for
(i) unstable and (ii) stable modes. Curves are plotted in the range −π/2 � θ0 � π/2, and
intersections between the solid and dashed (θ2 = θ0) curves are values of θ0 for fixed-point
solutions to (3.10).

which is no larger than 1 since ω2
1/ω

2
0 < 1. The question of stability is therefore about

whether the decrease is greater or less than the increase during the first half of the
cycle. The overall amplification factor through a single period is then given by

C2

A2
=

{
1 +

(
ω2

0

ω2
1

− 1

)
sin2 (ω0T/2 + θ0)

}{
1 +

(
ω2

1

ω2
0

− 1

)
sin2 (ω1T/2 + θ1)

}
.

(3.17)

The phase θ2 at the beginning of the new cycle (at time t2) is given by

θ2 = tan−1

[
ω0

ω1

tan (ω1T/2 + θ1)

]
, (3.18)

where

θ1 = tan−1

[
ω1

ω0

tan (ω0T/2 + θ0)

]
. (3.19)

Since we seek solutions that are similar for each cycle, we require that θ2(θ0) = θ0 (a
fixed-point solution) and solve for θ0. The solution is given by

tan θ0 =
τ0τ1(W2 − 1)

2W(τ0 + Wτ1)
±

√
τ 2
0 τ 2

1 (W2 − 1)2 − 4W(τ0 + Wτ1)(τ1 + Wτ0)

2W(τ0 + Wτ1)
, (3.20)

where W =ω0/ω1 and τk = tan ωkT /2.
Figure 2 shows two qualitatively different examples of phase maps (figure 2b) and

corresponding amplification factors (figure 2a). Figures 2(a)(i) and 2(b)(i) show the
case when the phase map has a stable fixed point. In this case, the state vector
converges toward the fixed point that corresponds to an amplification factor larger
than one. The growth rate for the disturbance is obtained by substitution of the
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Figure 3. A stability-regime diagram in (Λ̄, δΛ)-space and on the f -plane, plotting slope α−1

(shading) and growth rate γ in days−1 (contours) for the fastest-growing inviscid unstable
mode when the environmental parameters have the values given in the text.

root (3.20) that corresponds to the growing mode into the equation for C2/A2.
Figures 2(a)(ii) and 2(b)(ii) show the case when fixed points do not exist. The state
vector in this case never becomes phase-locked, and throughout its evolution has
amplification factors both below and above 1. Transient growth is possible in this
case for a finite time interval. The Floquet theorem (Bender & Orszag 1978) implies
that no indefinitely sustained exponential growth will occur.

Instability is therefore connected to the existence of fixed points of the map θ2(θ0).
When a fixed point θ0 exists, such that C2/A2(θ0) > 1, the amplification factor can
alternatively be written as

C2

A2
=

1 +
(
W2 − 1

)
sin2 (ω0T/2 + θ0)

1 +
(
W2 − 1

)
sin2 (θ0)

. (3.21)

The growth rate γ is defined by

γ =
1

2T
log

(
C2

A2

)
, (3.22)

an analytic expression that is a function of f , N , T , Λ̄, δΛ and α. The viscous growth
rate is easily obtained by subtracting νm2 from γ . For the plots discussed next, the
environmental parameters (f , T and N) are fixed, and Newton’s method is used to
find the maximum growth rate γ as a function of the tangent of the propagation
angle α for each choice of (Λ̄, δΛ).
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Figure 3 presents a stability-regime diagram in (Λ̄, δΛ)-space, showing slope α−1

(shading) and growth rate γ (contours) for the fastest-growing inviscid unstable mode
when f = 1.5×10−6 s−1 (representing a small near-equatorial value), T =22 days, and
N = 0.015 s−1. The algorithm outlined in the previous paragraph is unreliable for very
small δΛ and the range of δΛ is therefore limited from below by 0.1 × 10−6 s−1 in
figure 3. The bottom right-hand region of the diagram is dominated by II, for which
γ increases rapidly with increasing Λ̄ above the critical value f and the dominant
disturbances are horizontal (i.e. α−1 = ∞). Oscillatory shear (δΛ 
= 0) tends to reduce
the growth rates associated with II, and the width of the II region shrinks as δΛ

increases. Immediately to the left of the II-dominated region there are PSI-type
instabilities. There is a dramatic change in the dominant α−1 (from infinity to finite
values) across the boundary separating the II-dominated and PSI-dominated regimes.
Note that the dominant growth rates associated with PSI are independent of Λ̄ for
a wide range of Λ̄ and increase linearly with δΛ. For δΛ → 0, the dominant α can
alternatively be found from the dominant resonance condition

π

T
=

√
f (f − Λ̄) + N2α2, (3.23)

which yields

α2
dom |δΛ→0 =

π2

T 2N2
− f (f − Λ̄)

N2
. (3.24)

The dominant α−1 therefore increases with decreasing Λ̄. At Λ̄c = f − π2/f T 2 ≈
−3.2×10−7 s−1, the dominant α−1 becomes infinite. Further to the left, the right-hand
side of (3.24) becomes negative and there are no values of α that can satisfy the
dominant resonance condition (3.23). This induces the growth rate curves to turn
upwards.

When vertical mixing is included, the growth rate is no longer merely a function
of α for a fixed set of environmental parameters, as it also now depends on the
magnitude of the vertical wavenumber m. To compare with the remaining solutions
presented later, we present the results for a finite-size vertically periodic domain of
height H = 200 m and meridional half-width L =100 km.

Figure 4 shows the vertical modenumber, m∗ =mH/2π, and growth rate γ for the
fastest-growing instability when 
 = π/(2L), for ν = 10−6 m2 s−1. Because the dominant
vertical mode is now a discrete variable, the dominant growth rates are no longer
independent of Λ̄. This accounts for the wavy (rather than flat, as in figure 3)
appearance of the growth rate curves in figure 4. High-order vertical modes dominate
the II-dominated region (bottom right-hand corner), but with finite values of m∗ that
decrease with Λ̄ because of the viscosity; in addition, the critical value of Λ̄ for II
instability is now somewhat larger than f . In the rest of the parameter space, lower
vertical modes dominate the flow. The analysis shows that these modes are excited
via the PSI mechanism and anomalous Q plays no role in destabilizing them.

To obtain solutions to other forms of Λ(t), we solve (3.2) numerically. The square-
wave analytic solution turns out to be a good approximation to other forms of
periodic time dependence. Figure 5 compares the inviscid stability diagram in the
(Λ̄, δΛ)-parameter space for square-wave time dependence to that of a cosine-wave
time dependence. To capture both types of instability in the same graph, we plot
the growth rate for vertical mode m∗ =14 (m = 0.44 m−1), which experiences both II
(the region in the lower right-hand corner) and PSI (everywhere else). The general
properties of the two diagrams are very similar.
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3.2. Equatorial β-plane solutions

A more geophysically relevant situation arises in the equatorial ocean and atmosphere,
where traditional II occurs whenever the background flow has a non-zero meridional
shear at the equator. There is also strong time dependence due to large-scale equatorial
free waves, allowing the possibility of PSI. The question then arises as to which of the
two instabilities plays a more important role and how they interact. In considering the
equatorial case in this section, we extend the results of d’Orgeville & Hua (2005) to
the case when both steady and oscillatory meridional shear are present in the system.

On the equatorial β-plane, solutions to (2.4) can be represented as the expansions

vm(y, t) =

∞∑
j=0

vmj (t) φj (ηm), (3.25)

where the φj are Hermite functions defined by

φj (ξ ) =
(−1)j

(2j j!
√

π)1/2
exp

(
1
2
ξ 2

) dj

dξ j
exp(−ξ 2), (3.26)

with

ηm =

√
β|m|
N

(
y − y ′) (3.27)

and y ′ is an arbitrary constant.

3.2.1. Inertial instability

As for the f -plane case, we review properties of inertial instability for steady
background flow when Λ(t) = Λ̄. Setting

y ′ =
Λ̄

2β
(3.28)

in (3.27), we find that vmj satisfies (3.2) with

σ 2
mj = (2j + 1)

βN

m
− Λ̄2

4
. (3.29)

Solutions have the form (3.4) with s± given by (3.5). The latitude y ′ defined by (3.28)
coincides with the centre of the anomalous Q region and is called the dynamic equator.
Instability occurs when

Λ̄2 >
4βN

|m| + 4ν2m4 (3.30)

(Dunkerton 1981). Note that, in contrast to the f -plane case, inviscid unstable
solutions always exist for any non-zero Λ̄.

According to (3.29), there is a low vertical wavenumber cutoff for unstable modes
(Griffiths 2003a),

|m| >
4βN

Λ̄2
. (3.31)

The most unstable mode has a vertical wavelength determined by ν, and its meridional
structure is the j = 0 Hermite function (a Gaussian) centred on the dynamic equator.
The characteristic meridional scale of the perturbation is given by the Rossby radius
of deformation N/(β|m|) and is therefore proportional to its vertical scale. For values
of y ′ sufficiently larger than the Rossby radius of deformation for a given unstable
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mode, we expect that such a mode would experience f -plane-like linear dynamics
with f set to βy ′.

3.2.2. Time-dependent instability

For the analysis of time-dependent instability, it is convenient to non-dimensionalize
the governing equations. We use the same scaling as d’Orgeville & Hua (2005)

{t, T , Λ−1} =

√
|m|
βN

{t∗, T ∗, Λ∗,−1}, y =

√
N

β|m|y
∗, (3.32)

where t∗, T ∗, Λ∗ and y∗ are non-dimensionalized time, background flow oscillation
period, background shear, and latitude, respectively.

With the asterisks and index m dropped, (2.4) becomes(
D2 − ∂yy + y2 − yΛ̄ − yδΛ cos

2πt

T

)
v = 0, (3.33)

where we now set Λ(t) to the form of a cosine wave (equation (3.8)). Transforming
the meridional coordinate to

η = y − 1
2
Λ̄, (3.34)

we obtain (
D2 − ∂ηη + η2 − Λ̄2

4
− δΛ

(
η +

Λ̄

2

)
cos

2πt

T

)
v = 0. (3.35)

Substituting the Hermite function expansion (3.25) into (3.35), and using the defining
equation

∂2φj

∂η2
− η2φj = −(2j + 1)φj , (3.36)

yields

∞∑
j=0

[
φj D2vj + (2j + 1)vjφj − Λ̄2

4
vjφjδΛ

(
η +

Λ

2

)
cos

(
2πt

T

)
vjφj

]
= 0. (3.37)

Finally, using the identity

ηφj = jφj−1 + 1
2
(φj+1), (3.38)

we can eliminate the products ηφj to obtain

D2vj +

(
2j + 1 − Λ̄2

4

)
vj −δΛ cos

[
2πt

T

] {
1

2
vj−1 +

Λ̄

2
vj + (j + 1)vj+1

}
= 0. (3.39)

The system studied in d’Orgeville & Hua (2005) is a special case of (3.39) obtained
by setting Λ̄ = 0.

In contrast to the f -plane case, the equatorial β-plane dynamics linearized around
an oscillating background flow is governed by an infinite set of coupled ordinary
differential equations. We find, however, that solutions were well converged when the
set was truncated at j = 10. To determine the solution of the system, we resort to
numerical Floquet analysis: we integrate the truncated system (3.39) in time for one
period T using a fourth-order Runge–Kutta algorithm and calculate the eigenvalues
of the resulting Floquet matrix using a MATLAB eigensolver. We also obtained
solutions to (3.35) using a second-order finite-difference spatial discretization in y

instead of a Hermite expansion, verifying our results.
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Figure 6. A stability-regime diagram in (Λ̄, δΛ)-space and on the equatorial β-plane, plotting
vertical mode number m∗ (shading) and growth rate γ in days−1 (contours) for the fastest
growing, unstable mode, when the environmental parameters have the values listed in the text
and ν = 10−6 m2 s−1 and for a background flow with time dependence. The circles mark the
parameter regimes of nonlinear solutions discussed in § 4.

The solutions are presented in dimensional form. Figure 6 presents a stability-
regime diagram in (Λ̄, δΛ)-space, plotting m∗ and γ for the fastest-growing instability
when ν = 10−6 m2 s−1, β = 2.29 × 10−11 m−1 s−1, and other parameter values are the
same as for the f -plane case (except for L, which is effectively infinite in our linear
model). As in the f -plane case, there is a sharp boundary between the regions of
II and PSI dominance at low δΛ and a sharp disparity in dominant wavenumbers
across that boundary. For the chosen parameters, the critical value of steady shear is
Λ̄ ≈ 1.67 × 10−6 s−1 (Griffiths 2003a), and the dominant vertical mode at the critical
shear is m∗ =19, corresponding to vertical wavenumber m ≈ 0.6 m−1. In contrast,
there is a new ‘wedge region’ in the upper-right-hand corner, where, even though
the dominant instability mechanism is PSI, the gravest modes have high vertical
modenumber, similar to II-favoured modes. Their meridional structure, however, is
different from the II-favoured Gaussian, which are centred on the dynamic equator;
instead, it resembles an order-one Hermite function with a zero crossing between
the two dynamic equators representative of the background shears Λ̄ + δΛ and
Λ̄ − δΛ. The wedge-region modes are also similar to the II modes in that they
are highly sensitive to ν. Indeed, there is no viscosity-independent vertical-scale
selection in this regime, indicating that the selection must be determined by nonlinear
processes.

4. Nonlinear solutions
In this section, we investigate the finite-amplitude stage in the development of

near-equatorial perturbations, finding solutions to the nonlinear model (2.3) on the
equatorial β-plane. Values for model parameters are given in table 1; they are
essentially the same as those used for the linear equatorial β-plane solutions, except
for the inclusion meridional viscosity νh and diffusivity κh required for numerical
stability.
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Parameter Value Interpretation

β 2.29 × 10−11 m−1s−1 Gradient of Coriolis parameter
g 9.78 m s−2 Acceleration due to gravity
ρ∗ 1020 kg m−3 Reference density
T 22 days Forcing period
H 200m Domain height
L 500 km Domain half-width
N 0.015 s−1 Background buoyancy frequency
νh 50 m2 s−1 Horizontal viscosity
νv 10−6 m2 s−1 Vertical viscosity
κh 50 m2 s−1 Horizontal diffusivity
κv 10−6 m2 s−1 Vertical diffusivity

Table 1. Default parameters for the nonlinear model.

Run Λ̄ δΛ

II 2.5 0
II+ 2.5 1.0
PSI 0 2.5
MI 2.0 2.0

Table 2. Initial time-mean shear Λ̄ and oscillating shear magnitude δΛ in 10−6 s−1 for
experiments described in § 4.

The initial background zonal velocity profile is set at U (t = 0, y) =
(
Λ̄ + δΛ

)
.

An initial perturbation is introduced to (2.3) by adding

δρ(y, z) = ε cos
(πy

Y

) 20∑
m∗=1

cos

(
2πm∗z

H
+ ϕm∗

)
(4.1)

to ρb in the strip −Y <y <Y , where ε = 5 × 10−2 kgm−3, Y = 160 km, and phases
ϕm∗ are random numbers between −π and π. We found that a grid resolution of
�y = 6.1 km and �z = 2 m provides sufficient resolution for most experiments; when
it did not, the resolution was doubled both horizontally and vertically. A time step
of 30 s is sufficient to ensure numerical stability throughout the evolution.

In order to identify the presence of interleaving structures, we also integrate an
equation such as (2.3c) for a passive tracer S. The initial state of S is given by

Sb(y, z) = S0 + Syy, (4.2)

where Sy = −5 × 10−6 psum−1, a simple representation of the observed salinity field
in the near-equatorial thermocline of the equatorial Pacific.

In the following, we describe four experiments designed to investigate nonlinear
development of the instabilities found in the previous section. The parameter regimes
in these experiments qualitatively correspond to the cases of pure II (run II), influence
of oscillatory shear on II (run II+), pure PSI (run PSI) and mixed instabilities (run
MI). The background flow for each experiment is specified in table 2, and marked by
dots on the β-plane stability regime diagram in figure 6.
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4.1. Pure II

The nonlinear equilibration of inertially unstable steady jets has been studied by
Hua et al. (1997) and by Griffiths (2003a, b). They found that as the perturbation
reaches substantial amplitude, a region of anomalously low potential vorticity of the
vertically averaged state q = f − (1/H )

∫ H

0
uy dz forms and then spreads poleward

as the magnitude of q decreases. In the final state, fq approaches 0 in the region
affected by II. When there is a forcing that maintains the background current, the
system reaches a steady state with an equilibrated finite-amplitude disturbance. In
its absence, Griffiths (2003a) found that the disturbance eventually decays, leaving
behind a modified vertically independent background state with nearly zero potential
vorticity in the initially unstable region.

Here, we consider an unstable case with Λ̄ = 2.5 × 10−6 s−1 and δΛ = 0, for which
the region of anomalous Q is between the equator and 90 km north of the equator.
Snapshots of fields filtered for each vertical mode separately (not shown) indicate that
the spatial structure of the disturbances is initially the same as predicted from linear
instability theory: the meridional velocity v is represented by a Gaussian centred on
the dynamic equator approximately 45 km north of the equator, the perturbation
zonal velocity u is phase-locked to, and is negatively correlated with, v in the unstable
region, and the growth rate is approximately 0.06 days−1. For comparison with
earlier studies, it is useful to characterize the strength of the II in terms of a non-
dimensional growth rate ŝ = s/(Λ̄/2). Our parameters correspond to ŝ = 0.57, about
midway between the weakly unstable regime 0 < ŝ � 0.25 of Griffiths (2003a) and the
strongly unstable regime of Griffiths (2003b) (0.75 < ŝ � 0.88).

Because u and v are negatively correlated as the perturbation grows, the meridional
advection of perturbation zonal velocity is such that cells with eastward perturbation
zonal velocity are advected towards the equator and cells with westward perturbation
zonal velocity are advected poleward. In terms of the spectrum of vertical modes,
this rearrangement appears as a cascade into higher and lower vertical modes.
Figure 7(a) shows the vertical-mode (m∗) spectrum of the kinetic energy as a function
of time. At day 110, the energy is distributed over a broadband of vertical modes. At
later times, the band narrows to a few vertical modes with a vertical modenumber
m∗ = mH/(2π) = 10. This value falls between the gravest linear mode m∗ = 13 and the
buoyancy cutoff mode m∗ = 7, which is indicative of a slight upscaling. This is similar
to the least unstable simulation of Griffiths (2003b) (his figures 3 and 4).

Density overturns first begin to appear at the poleward boundary of the anomalous-
Q region. The maximum of the perturbation streamfunction moves towards the
equator, but the perturbation density stays asymmetric. For the vertically averaged
flow, this implies that corrections to the zonal flow are eastward near the equator
and westward away from the equator. As a result, meridional shear in the initially
unstable region is decreased and the flow becomes less unstable. The adjusted q and
fq tend to be homogenized, thus eliminating the unstable region (figures 7b, c).
Griffiths (2003a) has shown that further development is determined by whether the
vertically averaged flow becomes completely stabilized before the unstable modes
reach overturning amplitudes (as in weakly unstable cases) or after (as in the case
reported here). In the latter case, the disturbance grows to a large amplitude and
overturning becomes an important part of the neutralization process.

Griffiths (2003b) argues that in a strongly unstable case, the vertical scale
that is eventually selected is approximately the low-cutoff wavenumber for II, i.e.
m ≈ 4βN/Λ̄2 = 0.22m−1, which roughly corresponds to a vertical scale of 30 m. In
our case, the selected vertical scale is much smaller. Figure 7(d) shows the tracer field
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Figure 7. Plots illustrating the response of the nonlinear model for a background current
dominated by II, showing (a) the time evolution of the vertical-mode (m∗) spectrum of the
kinetic energy, and snapshots of (b) q , (c) fq , and (d) the tracer field S at day 165. m∗-spectrum
of the kinetic energy is defined as (1/2)ρ0

∑
l∗ (|û(l∗,m∗, t)|2 + |v̂(l∗,m∗, t)|2), where û(l∗,m∗, t)

and v̂(l∗,m∗, t) are Fourier transforms of the velocity fields u(y, z, t) and v(y, z, t), respectively.

at the time of maximum disturbance amplitude (day 165), and the intrusions have
vertical scales between 10 and 20 m. However, it is still reasonable to characterize the
II in the case described here as strong, because the intrusions have a meridional extent
over 200 km – more than twice exceeding the confines of the initially unstable region.
For comparison, in the weakly nonlinear cases of Griffiths (2003a), the disturbances
extend poleward to at most about 3/2 the width of the unstable region.

4.2. Effect of oscillatory shear on II

As expected from the linear theory developed in § 3, oscillatory shear tends to suppress
inertial instability and enhance the growth of the PSI-favoured modes. When a small
oscillatory shear (δΛ � 0.7 × 10−6 s−1) is added to a strongly inertially unstable initial
time-mean shear, its effects are small and the inertial instability proceeds in a similar
manner as before. With a somewhat larger δΛ (� 0.7 × 10−6 s−1), there are significant
changes to the time development of the flow (figure 8a). Initially, the II mode
proceeds in a similar manner as in the case of a steady shear, although the amplitude
is weakened. At later times, however, the PSI-favoured vertical modes 3, 5 and 7 come
into prominence. Because the meridional structure of these modes is represented by
higher-order Hermite functions, this result is sensitive to meridional viscosity. For a
meridional viscosity ten times the default value, PSI favours vertical modes 3 and
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Figure 8. As in figure 7, except for solution II+ with the snapshots at day 1078.

5 instead of 5 and 7. Note that although II has the fastest linear growth rate, it is
PSI that dominates the later stages of development: because of the lower vertical
wavenumber associated with the PSI modes, they can reach higher amplitudes without
overturning.

The modifications to the background flow are such that q and fq are partially
mixed. Figures 8(b) and 8(c) show the adjusted q and fq when the phase of the
background oscillatory flow is zero (corresponding to the moment of time when the
overall background shear is at its maximum, i.e. Λ̄ + δΛ). The extent of the mixed
region is determined by the amplitude of the dominant disturbance and extends to the
north substantially further than in the steady case. South of the equator, the nonlinear
development of the instability creates a region of strong curvature in the zonal velocity
profile, which may come to play an important role in a fully three-dimensional
flow where barotropic and baroclinic instabilities are possible (Limpasuvan et al.
2000). Although steady-state II also tends to create regions of strong curvature, their
magnitude is considerably weaker (compare figures 7b and 8b).

A snapshot of the tracer field at day 1078 is shown in figure 8(d). Intrusions extend
about 300 km north of the equator; well beyond the northernmost boundary of the
anomalous Q region (∼130 km). The intrusions also extend farther south than in the
steady-state case, some reaching −100 km. The vertical scale of the intrusions is much
less well-defined than in the steady case. There has been substantial lateral mixing of
the tracer between y = −100 and 200 km.
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Figure 9. As in figure 7, except for solution PSI with the snapshots at day 1078.

4.3. Pure PSI

At the opposite extreme in our study is the case when the background shear
is purely oscillatory (Λ̄ =0). Figure 9 illustrates the solution when Λ̄ = 0 and
δΛ = 2.5 × 10−6 s−1. Experiments with values of δΛ between 1.5 × 10−6 s−1 and 2.8 ×
10−6 s−1 produce qualitatively similar results (with, respectively, slower/higher growth
rates during the initial growth stage), while for δΛ less than 1.5 × 10−6 s−1, the
background flow is stabilized before any overturning occurs. We did not attempt any
simulations with δΛ larger than 2.8 × 10−6 s−1.

In accordance with the linear theory of § 3.2, the initial phase is dominated by
the growth of the vertical mode m∗ = 7 (figure 9a). In contrast to the pure II case,
other vertical modes initially do not experience substantial growth and the spectrum
remains nearly monochromatic throughout the initial phase. The meridional structure
of the gravest disturbance projects mostly onto the zeroth and first Hermite functions
centred on the equator, and is not sensitive to meridional viscosity.

By day 300, there is a cascade of energy into the higher harmonics of the dominant
mode 7. All harmonics reach their peak amplitude at approximately the same time.
At that time, the Richardson number associated with the meridional velocity field
decreases to its critical value of 1/4 in some locations, leading to overturning, which
subsequently weakens all the vertical modes with viscosity eliminating the highest
modes most rapidly. The highest vertical mode shown (mode 35) is the first to
dissipate, followed at later times by modes 28, 21 and 14. Mode m∗ = 7 loses some
energy, but remains strong for some time after its higher harmonics have dissipated.
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Figure 10. As in figure 7, except for solution MI with the snapshots at day 880.

As the vertically averaged state is modified, the modes that were originally unstable
begin to oscillate faster and are no longer capable of extracting energy from the
background flow. A linear stability analysis of this modified state shows that a higher
vertical mode now oscillates at an appropriate frequency and experiences growth
through PSI. Figure 9(a) shows that after the overturning event, the dominant mode
shifts to m∗ =8, and the m∗ = 3 mode dominates even later, at a time when the
disturbance reaches its largest amplitude. The figure is terminated at a finite time, but
the m∗ = 3 mode continues to dominate the evolution for yet longer time.

Figures 9(b) and 9(c) show the snapshots of q and fq at day 1078, when the phase
of the background shear is at its maximum. Unlike the II scenario, the vertically
averaged q is not homogenized near the equator. In the immediate vicinity of the
equator the vertically averaged shear, in fact, becomes much more positive than the
initial shear, but the vertically averaged flow remains inertially stable, since fq is still
positive. Now the adjusted mean q is relatively uniform in two regions approximately
100 km wide north and south of the equator. A snapshot of the tracer field on day
1078 shows the dominance of vertical mode 3 (figure 9d), and the intrusions extend
from about −250 km to +250 km.

4.4. Mixed instabilities

With Λ̄ = δΛ = 2 × 10−6 s−1, the system lies in the wedge (mixed-instability) region in
the upper-right-hand corner of the linear stability diagram (figure 6). Figure 10(a)
shows the evolution of the vertical mode spectrum of the kinetic energy for this
case. Initially, significant kinetic energy appears in modes 3, 5 and 10, leading to a
broadband vertical mode spectrum, once the disturbances reach large amplitude, that
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is quite different from the pure PSI and pure II cases. At later times, the spectrum
decreases monotonically with m∗. Figures 10(b) and 10(c) show snapshots of q and
fq at day 880, when the phase of the background shear is at its maximum. Overall,
the curves are similar to their counterparts for the pure II case (figures 7b and 7c)
except with a much broader meridional extent. The region of anomalous q is almost
eliminated, and q is homogenized over a large meridional extent north of the equator
where its value is almost zero. The zonal flow curvature to the south of the equator is
much weaker than in the II+ case and is qualitatively similar to the pure II scenario.
A snapshot of the tracer field (figure 10d) shows the presence of a wide range of
vertical scales, in contrast to pure II and similar to the late stages of the II+ case,
and the intrusions extend from about −100 km to +350 km.

5. Summary and discussion
We have shown that time-dependence can dramatically modify the stability

characteristics of zonal currents in the ocean. With time dependence, instability
can be manifested as a traditional inertial instability (II), a parametric subharmonic
type (PSI), and a mixture of both types. We investigate a two-parameter family
of time-dependent background flows, the parameters being the magnitudes of the
background time-mean Λ̄ and oscillatory δΛ shears, and we provide a quantitative
description of the instability regimes in different parts of the parameter space.

A linear stability analysis on the f -plane shows that there is a clear separation
between II-dominated and PSI-dominated regions in parameter space. II dominates
for high Λ̄ and low δΛ. If Λ̄ is kept fixed at a value at which it is unstable for
small δΛ, its growth rate decreases as δΛ increases until a critical value is reached
when the instability switches to PSI. PSI dominates when both Λ̄ and δΛ are high.
Consideration of the same type of background flows on the equatorial β-plane gives
similar results, with PSI and II being well separated throughout most of the parameter
space. In addition, there is a distinct region for high values of Λ̄ and δΛ where there
is an interaction between the two instability mechanisms (mixed instability).

For steady background shear, the nonlinear time-development proceeds by the
route described in Griffiths (2003a) and Hua et al. (1997). When the background
shear is time dependent, there are similarities to the steady-shear case, but important
differences as well, particularly concerning the meridional extent of intrusions. When
II is not too strong, II-favoured modes equilibrate at low amplitude because of their
high vertical wavenumber (either through vertical viscosity or overturning) and do
not produce tracer interleaving patterns of large meridional extent. In contrast, PSI-
favoured modes, even though they have a slower growth rate, usually grow to a higher
amplitude, producing interleaving patterns with a meridional scale of the order of
300 km.

Such interleavings are likely to be an important mixing process in the equatorial
ocean (note the evidence of lateral mixing shown for cases II, II+ and MI in figures 7d ,
8d , and 10d). On the basin scale, a nonlinear interplay between vertical and lateral
mixing, leading to either direct damping of the internal dynamics by lateral dissipation
(when the lateral mixing coefficient is large), or inducing accumulation of high
vertical wavenumber activity near the equator accompanied by spuriously high vertical
dissipation (when the lateral mixing coefficient is low) is well-documented (Maes,
Madec & Delecluse 1997). There is growing evidence that to capture realistic equatorial
circulation, a numerical model has to have a spatially non-uniform lateral diffusion
coefficient (Large et al. 2001; Pezzi & Richards 2003). This non-uniformity, however,
cannot be introduced just to make observations fit simulation outputs. To supply
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models with predictive power such a parameterization must have a well-understood
physical process behind it. In this work, we have identified several such processes and
quantified their relative importance for different environmental parameter settings.

A limitation of this study is that the nonlinear model is forced in a simple way
in order to maintain the background current. In the real equatorial ocean, the
background current is also forced but in another way, by the adjustment to forcing
by the large-scale wind field through the radiation of equatorially trapped waves.
How do our results change when the background flow is forced more realistically,
for example, by a mixed Rossby–gravity (Yanai) wave? Other limitations are the
restrictions to one-dimensional background flows U (y) and two-dimensional (y, z)
instabilities. What is the impact when these restrictions are relaxed? We are currently
extending our work to address these, and other, issues.
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